Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495002

RESUMO

Neurodegeneration is linked to the progressive loss of neural function and is associated with several diseases. Hypoxia is a hallmark in many of these diseases, and several therapies have been developed to treat this disease, including gene expression therapies that should be tightly controlled to avoid side effects. Cells experiencing hypoxia undergo a series of physiological responses that are induced by the activation of various transcription factors. Modulation of microRNA (miRNA) expression to alter transcriptional regulation has been demonstrated to be beneficial in treating multiple diseases, and in this study, we therefore explored potential miRNA candidates that could influence hypoxia-induced nerve cell death. Our data suggest that in mouse neuroblasts Neuro-2a cells with hypoxia/reoxygenation (H/R), miR-337-3p is downregulated to increase the expression of Potassium channel tetramerization domain containing 11 (KCTD11) and subsequently promote apoptosis. Here, we demonstrate for the first time that KCTD11 plays a role in the cellular response to hypoxia, and we also provide a possible regulatory mechanism by identifying the axis of miR-337-3p/KCTD11 as a promising candidate modulator of nerve cell survival after H/R exposure.


Assuntos
MicroRNAs , Neuroblastoma , Animais , Camundongos , Regulação para Baixo , Regulação da Expressão Gênica , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neuroblastoma/genética
2.
Int J Nanomedicine ; 19: 1487-1508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380147

RESUMO

Background: Radiation stimulates the secretion of tumor stroma and induces resistance, recurrence, and metastasis of stromal-vascular tumors during radiotherapy. The proliferation and activation of tumor-associated fibroblasts (TAFs) are important reasons for the production of tumor stroma. Telmisartan (Tel) can inhibit the proliferation and activation of TAFs (resting TAFs), which may promote radiosensitization. However, Tel has a poor water solubility. Methods: In this study, self-assembled telmisartan nanoparticles (Tel NPs) were prepared by aqueous solvent diffusion method to solve the insoluble problem of Tel and achieve high drug loading of Tel. Then, erythrocyte membrane (ECM) obtained by hypotonic lysis was coated on the surface of Tel NPs (ECM/Tel) for the achievement of in vivo long circulation and tumor targeting. Immunofluorescence staining, western blot and other biological techniques were used to investigate the effect of ECM/Tel on TAFs activation inhibition (resting effect) and mechanisms involved. The multicellular spheroids (MCSs) model and mouse breast cancer cells (4T1) were constructed to investigate the effect of ECM/Tel on reducing stroma secretion, alleviating hypoxia, and the corresponding promoting radiosensitization effect in vitro. A mouse orthotopic 4T1 breast cancer model was constructed to investigate the radiosensitizing effect of ECM/Tel on inhibiting breast cancer growth and lung metastasis of breast cancer. Results: ECM/Tel showed good physiological stability and tumor-targeting ability. ECM/Tel could rest TAFs and reduce stroma secretion, alleviate hypoxia, and enhance penetration in tumor microenvironment. In addition, ECM/Tel arrested the cell cycle of 4T1 cells to the radiosensitive G2/M phase. In mouse orthotopic 4T1 breast cancer model, ECM/Tel played a superior role in radiosensitization and significantly inhibited lung metastasis of breast cancer. Conclusion: ECM/Tel showed synergistical radiosensitization effect on both the tumor microenvironment and tumor cells, which is a promising radiosensitizer in the radiotherapy of stroma-vascular tumors.


Assuntos
Neoplasias Pulmonares , Neoplasias Vasculares , Camundongos , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Membrana Eritrocítica , Neoplasias Pulmonares/tratamento farmacológico , Tolerância a Radiação , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Org Biomol Chem ; 21(39): 7895-7899, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747203

RESUMO

Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.

4.
Ann Clin Lab Sci ; 53(4): 598-606, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37625845

RESUMO

OBJECTIVE: The present study aimed to investigate the effects of the PI3K inhibitor PX-866 or PI-103 combined with the autophagy inhibitor 3-methyladenine (3-MA) on the apoptosis of T lymphoblastic leukemia cells. METHODS: The proliferation and apoptosis of T lymphoblastic leukemia cell lines were detected by CCK-8 and flow cytometer. The expression of proteins was measured by western blot. The effect of PI3K inhibitors combined with 3-MA on the number of autophagosomes was detected by transmission electron microscopy (TEM). RESULTS: We found PX-866 and PI-103 treatment reduced cell viability while increasing apoptosis in CCRF-CEM and Jurkat cells, which was further enhanced when combined with 3-MA. The phosphorylation levels of AKT and mTOR were suppressed by PX-866 or PI-103, which were reversed by 3-MA. Further, the expression of LC3, ATG5, ATG12 and Beclin-1 was upregulated by PX-866 or PI-103 and downregulated by 3-MA. TEM results revealed that the number of autophagosome was increased by PX-866 or PI-103 treatment, which was reversed by 3-MA. CONCLUSIONS: The results demonstrated that 3-MA could suppress PI3K inhibitor-mediated activation of autophagy to promote the apoptosis of tumor cells. This discovery provided experimental support for constituting a promising strategy for T-cell acute lymphoblastic leukemia (T-ALL) therapy.


Assuntos
Linfoma não Hodgkin , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Autofagia , Apoptose , Linhagem Celular
5.
Polymers (Basel) ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631395

RESUMO

Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently employed as drug carrier materials because they are highly safe, come in a variety of forms, and have plentiful sources. Interestingly, the EO drug delivery system is based on the biomimetic concept since it corresponds to the structure of plant tissue. In this paper, we associate the biomimetic plant-like structures of the EO drug delivery system with the natural forms of EO in plant tissues, and summarize the characteristics of polysaccharide-based drug carriers for EO protection. Thus, we highlight the research progress on polysaccharides and their modified materials, including gum arabic, starch, cellulose, chitosan, sodium alginate, pectin, and pullulan, and their use as biomimetic drug carriers for EO preparations due to their abilities and potential for EO protection.

6.
Aging (Albany NY) ; 15(19): 10010-10030, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37647077

RESUMO

BACKGROUND: Recently, endoplasmic reticulum stress related gene (ERS) markers have performed very well in predicting the prognosis of tumor patients. METHODS: The differentially expressed genes in Oral squamous cell carcinoma (OSCC) were obtained from TCGA and GTEx database. Three prognosis-related and differentially expressed ERSs were screened out by Least Absolute Selection and Shrinkage Operator (Lasso) regression to construct a prognostic risk model. Receiver Operating Characteristic Curve (ROC), riskplots and survival curves were used to verify the model's accuracy in predicting prognosis. Multi-omics analysis of immune infiltration, gene mutation, and stem cell characteristics were performed to explore the possible mechanism of OSCC. Finally, we discussed the model's clinical application value from the perspective of drug sensitivity. RESULTS: Three genes used in the model (IBSP, RDM1, RBP4) were identified as prognostic risk factors. Bioinformatics analysis, tissue and cell experiments have fully verified the abnormal expression of these three genes in OSCC. Multiple validation methods and internal and external datasets confirmed the model's excellent performance in predicting and discriminating prognosis. Cox regression analysis identified risk score as an independent predictor of prognosis. Multi-omics analysis found strong correlations between risk scores and immune cells, cell stemness index, and tumor mutational burden (TMB). It was also observed that the risk score was closely related to the half maximal inhibitory concentration of docetaxel, gefitinib and erlotinib. The excellent performance of the nomogram has been verified by various means. CONCLUSION: A prognostic model with high clinical application value was constructed. Immune cells, cellular stemness, and TMB may be involved in the progression of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias Bucais/genética , Estresse do Retículo Endoplasmático/genética , Proteínas Plasmáticas de Ligação ao Retinol , Proteínas de Ligação a DNA
7.
Radiol Cardiothorac Imaging ; 5(3): e220096, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37404786

RESUMO

Purpose: To assess the effect of lung volume on measured values and repeatability of xenon 129 (129Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD). Materials and Methods: This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated 129Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC). The remaining 17 participants underwent imaging at TLC, RV+FVC/3, and residual volume (RV). Signal ratios between membrane, red blood cell (RBC), and gas-phase compartments were calculated using hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (ie, IDEAL). Repeatability was assessed using coefficient of variation and intraclass correlation coefficient, and volume relationships were assessed using Spearman correlation and Wilcoxon rank sum tests. Results: Gas uptake metrics were repeatable at RV+FVC/3 (intraclass correlation coefficient = 0.88 for membrane/gas; 0.71 for RBC/gas, and 0.88 for RBC/membrane). Relative ratio changes were highly correlated with relative volume changes for membrane/gas (r = -0.97) and RBC/gas (r = -0.93). Membrane/gas and RBC/gas measured at RV+FVC/3 were significantly lower in the COPD group than the corresponding healthy group (P ≤ .001). However, these differences lessened upon correction for individual volume differences (P = .23 for membrane/gas; P = .09 for RBC/gas). Conclusion: Dissolved-phase 129Xe MRI-derived gas uptake metrics were repeatable but highly dependent on lung volume during measurement.Keywords: Blood-Air Barrier, MRI, Chronic Obstructive Pulmonary Disease, Pulmonary Gas Exchange, Xenon Supplemental material is available for this article © RSNA, 2023.

8.
Exp Cell Res ; 429(2): 113686, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307941

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most deadly and metastatic cancers of the urinary tract. Latest studies have confirmed that long non-coding RNAs (lncRNAs) play a crucial role in a variety of cancers. Some of these lncRNAs code for small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which exert some value in predicting the prognosis of certain cancer patients, but little is known regarding the function of SNHGs within the PCa. AIM OF THE STUDY: To explore the expression distribution and differential analysis of SNHGs in different tumors using RNA-seq and survival data from TCGA and GTEx, and to assess the potential impacts of the lncRNA SNHG25 on human PCa. To validate the expression of SNHG25 using experimental data and to investigate in detail its particular molecular biological function on PCa both in vivo and in vitro. METHODS: LncRNA SNHG25 expression was analyzed by bioinformatic prediction and qPCR. CCK-8, EdU, transwell, wound healing, and western blotting assays were conducted to investigate the main role of lncRNA SNHG25 in PCa. Xenograft tumour growth model in nude mice was surveyed by in vivo imaging and Ki-67 staining. AKT pathway activator (SC79) was used to verify the interaction among SNHG25 and PI3K/AKT signaling pathway. RESULTS: Bioinformatics analysis and experimental research illuminated that the expression of lncRNA SNHG25 was observably up-regulated in PCa tissues and cells. Moreover, SNHG25 knockdown restrained PCa cell proliferation, invasion and migration, while promoting apoptosis. Xenografts model confirmed that the si-SNHG25 group had a significant inhibitory effect on PCa tumour growth in vivo. Additionally, a series of gain-of-function analyses suggested that SNHG25 could activate the PI3K/AKT pathway to accelerate PCa progression. CONCLUSIONS: These in vitro and in vivo findings demonstrate that SNHG25 is highly expressed in PCa and facilitates PCa development through regulation of PI3K/AKT signaling pathway. SNHG25 acts as an oncogene to predict tumour malignancy and survival in PCa patients and may therefore become a promising potential molecular target for early detection and therapy of lethal PCa.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nucleolar Pequeno/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética
9.
Cancers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345154

RESUMO

Clear cell renal cell carcinoma (ccRCC, or KIRC) is the most common type of kidney cancer, originating within the renal cortex. The current outcomes for early diagnosis and late treatment of ccRCC are unsatisfactory. Therefore, it is important to explore tumor biomarkers and therapeutic opportunities for ccRCC. In this study, we used bioinformatics methods to systematically evaluate the expression and prognostic value of Netrin family genes in ccRCC. Through our analysis, three potential biomarkers for ccRCC were identified, namely NTNG1, NTNG2, and NTN4. Moreover, we performed in vitro and in vivo experiments to explore the possible biological roles of NTN4 and found that NTN4 could regulate ccRCC development through Wnt/ß-catenin signaling. We elucidate the molecular mechanism by which NTN4 modulates ß-catenin expression and nuclear translocation to inhibit ccRCC progression, providing a new theoretical basis for developing therapeutic targets for ccRCC. Thus, we suggest that Netrin-related studies may offer new directions for the diagnosis, treatment, and prognosis of ccRCC patients.

10.
Brain ; 146(9): 3616-3623, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37253099

RESUMO

Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.


Assuntos
Anoctamina-1 , Doença de Moyamoya , Criança , Humanos , Adulto Jovem , Anoctamina-1/genética , Canais de Cloreto/genética , Doença de Moyamoya/genética , Proteínas de Neoplasias/genética
11.
Adv Sci (Weinh) ; 10(13): e2206333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869410

RESUMO

Near-infrared-II (NIR-II) ferroptosis activators offer promising potentials in in vivo theranostics of deep tumors, such as glioma. However, most cases are nonvisual iron-based systems that are blind for in vivo precise theranostic study. Additionally, the iron species and their associated nonspecific activations might trigger undesired detrimental effects on normal cells. Considering gold (Au) is an essential cofactor for life and it can specifically bind to tumor cells, Au(I)-based NIR-II ferroptosis nanoparticles (TBTP-Au NPs) for brain-targeted orthotopic glioblastoma theranostics are innovatively constructed. It achieves the real-time visual monitoring of both the BBB penetration and the glioblastoma targeting processes. Moreover, it is first validated that the released TBTP-Au specifically activates the effective heme oxygenase-1-regulated ferroptosis of glioma cells to greatly extend the survival time of glioma-bearing mice. This new ferroptosis mechanism based on Au(I) may open a new way for the fabrication of advanced and high-specificity visual anticancer drugs for clinical trials.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Glioma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Linhagem Celular Tumoral , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Ferro
12.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982218

RESUMO

Heat shock protein family A (HSP70) member 5 (HSPA5) is aberrantly expressed in various tumors and closely associated with the progression and prognosis of cancer. Nevertheless, its role in bladder cancer (BCa) remains elusive. The results of our study demonstrated that HSPA5 was upregulated in BCa and correlated with patient prognosis. Cell lines with low expression level of HSPA5 were constructed to explore the role of this protein in BCa. HSPA5 knockdown promoted apoptosis and retarded the proliferation, migration and invasion of BCa cells by regulating the VEGFA/VEGFR2 signaling pathway. In addition, overexpression of VEGFA alleviated the negative effect of HSPA5 downregulation. Moreover, we found that HSPA5 could inhibit the process of ferroptosis through the P53/SLC7A11/GPX4 pathway. Hence, HSPA5 can facilitate the progression of BCa and may be used as a novel biomarker and latent therapeutic target in the clinic.


Assuntos
Ferroptose , Neoplasias da Bexiga Urinária , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ferroptose/genética , Neoplasias da Bexiga Urinária/metabolismo
13.
J Cell Mol Med ; 27(8): 1095-1109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929666

RESUMO

Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.


Assuntos
Macrófagos , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Macrófagos/metabolismo , Células RAW 264.7 , Regeneração Óssea
14.
J Appl Clin Med Phys ; 23(3): e13516, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34985188

RESUMO

In modern radiotherapy, error reduction in the patients' daily setup error is important for achieving accuracy. In our study, we proposed a new approach for the development of an assist system for the radiotherapy position setup by using augmented reality (AR). We aimed to improve the accuracy of the position setup of patients undergoing radiotherapy and to evaluate the error of the position setup of patients who were diagnosed with head and neck cancer, and that of patients diagnosed with chest and abdomen cancer. We acquired the patient's simulation CT data for the three-dimensional (3D) reconstruction of the external surface and organs. The AR tracking software detected the calibration module and loaded the 3D virtual model. The calibration module was aligned with the Linac isocenter by using room lasers. And then aligned the virtual cube with the calibration module to complete the calibration of the 3D virtual model and Linac isocenter. Then, the patient position setup was carried out, and point cloud registration was performed between the patient and the 3D virtual model, such the patient's posture was consistent with the 3D virtual model. Twenty patients diagnosed with head and neck cancer and 20 patients diagnosed with chest and abdomen cancer in the supine position setup were analyzed for the residual errors of the conventional laser and AR-guided position setup. Results show that for patients diagnosed with head and neck cancer, the difference between the two positioning methods was not statistically significant (P > 0.05). For patients diagnosed with chest and abdomen cancer, the residual errors of the two positioning methods in the superior and inferior direction and anterior and posterior direction were statistically significant (t = -5.80, -4.98, P < 0.05). The residual errors in the three rotation directions were statistically significant (t = -2.29 to -3.22, P < 0.05). The experimental results showed that the AR technology can effectively assist in the position setup of patients undergoing radiotherapy, significantly reduce the position setup errors in patients diagnosed with chest and abdomen cancer, and improve the accuracy of radiotherapy.


Assuntos
Realidade Aumentada , Neoplasias de Cabeça e Pescoço , Radioterapia (Especialidade) , Radioterapia Guiada por Imagem , Calibragem , Humanos , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia Guiada por Imagem/métodos
15.
Comput Methods Programs Biomed ; 215: 106600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971855

RESUMO

BACKGROUND AND OBJECTIVES: Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately. METHODS: We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules. RESULTS: We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks. CONCLUSIONS: The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.


Assuntos
Nódulo da Glândula Tireoide , Algoritmos , Diagnóstico por Computador , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia
16.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943942

RESUMO

Obesity is closely linked to metabolic diseases, particularly non-alcoholic steatohepatitis (NASH) or non-alcoholic fatty liver disease (NAFLD), ultimately leading to hepatocellular carcinoma (HCC). However, the molecular mechanisms of NASH-associated HCC (NAHCC) remain elusive. To explore the impact of Max dimerization protein 3 (MXD3), a transcription factor that regulates several cellular functions in disorders associated with metabolic diseases, we conditionally expressed Mxd3 proteins using Tet-on mxd3 transgenic zebrafish (MXs) with doxycycline (MXs + Dox) or without doxycycline (MXs - Dox) treatment. Overexpression of global MXD3 (gMX) or hepatic Mxd3 (hMX) was associated with obesity-related NAFLD pathophysiology in gMX + Dox, and liver fibrosis and HCC in hMX + Dox. Oil Red O (ORO)-stained signals were seen in intravascular blood vessels and liver buds of larval gMX + Dox, indicating that Mxd3 functionally promotes lipogenesis. The gMX + Dox-treated young adults exhibited an increase in body weight and visceral fat accumulation. The hMX + Dox-treated young adults showed normal body characteristics but exhibited liver steatosis and NASH-like phenotypes. Subsequently, steatohepatitis, liver fibrosis, and NAHCC were found in 6-month-old gMX + Dox adults compared with gMX - Dox adults at the same stage. Overexpression of Mxd3 also enhanced AR expression accompanied by the increase of AR-signaling pathways resulting in hepatocarcinogenesis in males. Our results demonstrate that global actions of Mxd3 are central to the initiation of obesity in the gMX zebrafish through their effects on adipogenesis and that MXD3 could serve as a therapeutic target for obesity-associated liver diseases.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Obesidade/genética , Receptores Androgênicos/genética , Proteínas Repressoras/genética , Adipogenia/genética , Animais , Animais Geneticamente Modificados/genética , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/patologia , Transdução de Sinais/genética , Peixe-Zebra/genética
18.
BMC Med Imaging ; 21(1): 178, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819022

RESUMO

BACKGROUND: Most existing algorithms have been focused on the segmentation from several public Liver CT datasets scanned regularly (no pneumoperitoneum and horizontal supine position). This study primarily segmented datasets with unconventional liver shapes and intensities deduced by contrast phases, irregular scanning conditions, different scanning objects of pigs and patients with large pathological tumors, which formed the multiple heterogeneity of datasets used in this study. METHODS: The multiple heterogeneous datasets used in this paper includes: (1) One public contrast-enhanced CT dataset and one public non-contrast CT dataset; (2) A contrast-enhanced dataset that has abnormal liver shape with very long left liver lobes and large-sized liver tumors with abnormal presets deduced by microvascular invasion; (3) One artificial pneumoperitoneum dataset under the pneumoperitoneum and three scanning profiles (horizontal/left/right recumbent position); (4) Two porcine datasets of Bama type and domestic type that contains pneumoperitoneum cases but with large anatomy discrepancy with humans. The study aimed to investigate the segmentation performances of 3D U-Net in: (1) generalization ability between multiple heterogeneous datasets by cross-testing experiments; (2) the compatibility when hybrid training all datasets in different sampling and encoder layer sharing schema. We further investigated the compatibility of encoder level by setting separate level for each dataset (i.e., dataset-wise convolutions) while sharing the decoder. RESULTS: Model trained on different datasets has different segmentation performance. The prediction accuracy between LiTS dataset and Zhujiang dataset was about 0.955 and 0.958 which shows their good generalization ability due to that they were all contrast-enhanced clinical patient datasets scanned regularly. For the datasets scanned under pneumoperitoneum, their corresponding datasets scanned without pneumoperitoneum showed good generalization ability. Dataset-wise convolution module in high-level can improve the dataset unbalance problem. The experimental results will facilitate researchers making solutions when segmenting those special datasets. CONCLUSIONS: (1) Regularly scanned datasets is well generalized to irregularly ones. (2) The hybrid training is beneficial but the dataset imbalance problem always exits due to the multi-domain homogeneity. The higher levels encoded more domain specific information than lower levels and thus were less compatible in terms of our datasets.


Assuntos
Imageamento Tridimensional , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Aprendizado de Máquina , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste , Conjuntos de Dados como Assunto , Humanos , Pneumoperitônio/diagnóstico por imagem , Suínos
19.
Magn Reson Med ; 86(5): 2822-2836, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34227163

RESUMO

PURPOSE: To characterize the differences between histogram-based and image-based algorithms for segmentation of hyperpolarized gas lung images. METHODS: Four previously published histogram-based segmentation algorithms (ie, linear binning, hierarchical k-means, fuzzy spatial c-means, and a Gaussian mixture model with a Markov random field prior) and an image-based convolutional neural network were used to segment 2 simulated data sets derived from a public (n = 29 subjects) and a retrospective collection (n = 51 subjects) of hyperpolarized 129Xe gas lung images transformed by common MRI artifacts (noise and nonlinear intensity distortion). The resulting ventilation-based segmentations were used to assess algorithmic performance and characterize optimization domain differences in terms of measurement bias and precision. RESULTS: Although facilitating computational processing and providing discriminating clinically relevant measures of interest, histogram-based segmentation methods discard important contextual spatial information and are consequently less robust in terms of measurement precision in the presence of common MRI artifacts relative to the image-based convolutional neural network. CONCLUSIONS: Direct optimization within the image domain using convolutional neural networks leverages spatial information, which mitigates problematic issues associated with histogram-based approaches and suggests a preferred future research direction. Further, the entire processing and evaluation framework, including the newly reported deep learning functionality, is available as open source through the well-known Advanced Normalization Tools ecosystem.


Assuntos
Semântica , Isótopos de Xenônio , Algoritmos , Ecossistema , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
20.
J Gastrointest Oncol ; 12(3): 1007-1019, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295552

RESUMO

BACKGROUND: The effect of microRNAs (miRNA) on cancer regulations has received a considerable amount of attention recently. MiR-133a-5p has been identified as an anti-tumor miRNA in several types of cancers. However, the effect of miR-133a-5p on gastric cancer (GC) have not been uncovered. In this study, we sought to evaluate the regulation of TCF4 expression by miR-133-5p and the role of the miR-25-3p/TCF4 axis in the progression of GC, with the aim of identifying a potential therapeutic target for GC. METHODS: TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) database were used to analyze the expression and prognosis. We performed MTT and EdU assays to elucidate the effect on cell replication. Apoptotic cells were stained with annexin V-fluorescein isothiocyanate and propidium iodide to stain, and then analyzed by flow cytometry. The effect on cell metastasis was investigated in wound healing and transwell assays. A dual-luciferase reporter assay was used to check for the direct targeting of TCF4 by miR-133a-5p. Bioinformatic analysis of the relationship of TCF4 with tumor microenvironment and the signaling cascade of TCF4 was finally performed. RESULTS: We found that the level of miR-133a-5p was decreased in both tumor tissues and GC cell lines. MiR-133a-5p inhibited cell growth and metastasis, but promoted cell apoptosis. MiR-133a-5p directly targeted TCF4 and downregulated its expression. TCF4 was highly expressed in tumor and higher level of TCF4 indicated poorer prognosis. Moreover, TCF4 overexpression reversed the aforementioned anti-tumor activity of miR-133a-5p. The expression level of TCF4 was significantly correlated with tumor-infiltrating immune cells. CONCLUSIONS: Our findings altogether reveal that miR-133a-5p can serve as a tumor suppressor in gastric cancer via the miR-133a-5p/TCF4 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA